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Dynamic Behavior of Underwater Towed-cable in 
Linear Profile 
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Abstract— In this paper, a numerical approach is presented which is capable of predicting dynamic behavior of underwater towed-
cable structures when tow-ship changes its speed in a fixed direction making linear profile. A  three-dimensional model of underwater 
towed system is studied. The governing equations for the system are solved by using a central finite-difference method. The solution 
of the finite-difference form of the assembled of non-linear algebraic equations is obtained by Newton’s method. Since the underwater 
towed cable model uses implicit time integration, it is stable for large time steps and is an effective algorithm for simulation of large-
scale underwater towed systems. The solution of this problem is of practical importance in the estimation of dynamic loading and 
motion, and thus has direct application to the enhancement of safety and the effectiveness of the offshore activities.  
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1  INTRODUCTION 
NDERWATER  towed  systems  are  widely  used  for  
many marine applications (naval defense, oceanograph-
ic and geophysical measurements etc.). In naval appli-

cations, it is used for acoustic detection of submerged 
targets. In geophysical applications, it is used for oil-
prospecting. These systems can be as simple as a single 
cable with its towed vehicle, or they may be composed of 
multiple towed cables and multiple towed bodies. A typi-
cal component of a towing system is shown in Fig 1. It is 
well known that the equations of motion for the cable and 
towed vehicle are non-linear and their dynamic behaviors 
during various operations are mutually dependent.  As a 
result, these equations are strongly coupled. In order to 
study the complete problem, they must be solved simul-
taneously as a whole.  It  is  not  easy to solve such a com-
plicated problem analytically and hence numerical me-
thods are usually employed. The most prevalent ap-
proaches used in determining the hydrodynamic perfor-
mance of a cable in an underwater towed system are the 
lumped mass method [1] and the finite difference method 
[2]-[10].  However,  according  to  [5]  the  explicit  time  do-
main  integration  scheme  used  in  the  lumped  mass  me-
thod made the method conditionally stable. Burgess [6] 
pointed out that the time integration used in this algo-
rithm requires the time step to be chosen so that the Cou-
rant-Friedrichs-Levy wave condition is satisfied for the 
highest natural frequency of the lumped mass system. 
This  restricts  the  use  of  very  small  time  steps.  However,  

Thomas  and  Hearn  [7]  believed  that  the  collapse  of  the-
numerical procedure at large time steps in the method is 
not due to the instability of the numerical scheme, but is 
caused by the failure of the Newton- Raphson iterative 
procedure adopted to determine the correct tension levels 
to solve the nonlinear equations of motion.  
 

 
Fig 1: Components of a towing system. 

 
The reason for the collapse of the numerical procedure in 
the lumped mass method may not be clear, however it is 
true  that  time  steps  in  this  method  must  be  chosen  very 
small in order to avoid the failure in numerical procedure 
on the basis of experiences (Burgess [6]; Thomas and 
Hearn [7]). In the finite difference method, the governing 
equations  for  the  underwater  cable  are  derived  from the  
balance of forces at a point of cable. Among various finite 
difference methods, the model developed by Ablow and 
Schechter [2] is worthy to note. In this model, the cable is 
treated as a long thin flexible circular cylinder in arbitrary 
motion.  It  is  assumed that  the  dynamics  of  cable  are  de-
termined by gravity, hydrodynamic loading and inertial 
forces. The governing equations are formulated in a local 
tangential-normal coordinate frame which has the un-
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stretched distance along the cable. The differential equa-
tions are then approximated by finite difference equations 
centered  in  time  and  in  space.  By  solving  the  equations,  
the motion of underwater cable can be determined in the 
time domain. The principal advantage of this method is 
that it uses implicit time integration and is stable for large 
time  step  sizes.  It  is  a  good  algorithm  for  simulation  of  
large-scale underwater cable motion. 
In this paper a three-dimensional hydrodynamic model to 
simulate an underwater towed system is presented. In the 
model, the governing equations of cable are established 
based on the method of Ablow and Schechter [2]. The six 
degrees-of-freedom equations of motion for submarine 
simulations are adopted to predict the hydrodynamic 
performance of a towed vehicle. The established govern-
ing equations are then solved using a central finite differ-
ence method. The solution of finite-difference form of the 
assembly of non-linear algebraic equations is obtained by 
the Newton’s method. Gauss elimination with partial 
pivoting is applied to solve the linear system obtained by 
Newton’s method. Since, the model uses implicit time 
integration; it is stable for large time steps. It also gives 
more flexibility in choosing different time steps for differ-
ent manoeuvering problems, and is an effective algorithm 
for the simulation of a large-scale towed system. 

2  MATHEMATICAL MODEL 
A mathematical model of manoeuvring of underwater 
towed cable array system [11] is used to find out the loca-
tion and tension at any point on the cable as a function of 
time. The system is treated to be moving under the action 
of gravity, tow-ship, hydrodynamic loading and inertia 
forces. The loading function is taken to be the sum of in-
dependently operating normal and tangential drags. All 
these forces are shown in Fig 2. 
 

 
Fig 2:  Forces Considered on a Strained System Element of 

length dS . 
 
The dynamic model is a finite difference approximation 
to the three dimensional differential equations for conser-
vation of momentum. The total length of the cable-array 
system is discretized into a number of segments of arbita-
ry length.  The time is  divided into a number of  intervals  

and various parameters are evaluated at all spatial grid 
points js  and temporal grid points it . 
The dynamic problem formulation is  obtained by apply-
ing Newton’s second law of  motion to the cable element 
of infinitesimaly stretched length dS . 

,w d
B T

F F
t S

 

where B  is the momentum per unit length, T is the ten-
sion, wF is  the  weight  minus  buoyancy  per  unit  length  

and dF is the force exerted by the fluid on the cable-array 
system per unit length and is taken to be the sum of inde-
pendently operating normal drag and tangential. A sys-
tem of three scale equations is obtained by separating the 
three components of vector equation in the independent 
directions ( , , )t n b .  The  cable  orientation  is  given  in  the  
Fig 3. 
The compatibility relations in terms of velocity are                  

( ) ( ),                                                                (1)
r r

t s s t
 

 
Fig 3: The Orientation of the Cable. 

 
where r  is  a  position  vector  from  the  origin  of  a  fixed  
coordinate system ( , , )i j k to a point on the cable-array 
system. r is a function of unstretched cable-array system-
length coordinate s and the time t. By separating various 
components of the equation (1) in independent direc-
tions ( , , )t n b ,  a  system of  three  scalar  equations  of  com-
patibility is obtained. Three equations of motion and 
three equations of compatibility together present six sca-
lar dynamic differential equations of first order in space 
variable s and time variable t . 
The six governing equations of motion in matrix form are 
 

                                                                (2)
y y

M N q
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where A is the cross section area of unstretched cable; 

nC and tC are normal and tangential drag coefficients; 
d is diameter of cable;  is fluid density; dS is infinite-

simal stretched cable length; 
1

e
EA

, E  is Young’s mod-

ulus; m is mass per unit length of cable; 1m m A  is 
virtual mass per unit length; ( )w m A g is immersed 
weight per unit length; g  is gravitational acceleration; 
T is cable tension magnitude; v  is velocity of tow-ship; 

( , , )t n bJ J J J is  current  velocity  given  in  local  frame  

( , , )t n b ; ( , , )t n bJ J J J is the partial derivative of J w. r. 

t. time t  holding s  fixed; ( , , )t n bU U U U is tangential, 
normal  and  binormal  components  of  cable  structural  ve-
locity relative to current velocity ( )V J ; , ,x y z  are trail, 
lateral shift and depth of a point on cable w.r.t. tow-point 
in the inertial frame; ( , ), (s,t)s t Euler’s angles defining 

the position of local reference frame ( , , )t n b relative to the 
inertial frame ( , , )i j k . 
Three  boundary  conditions  at  the  tow-point  of  the  cable  
are provided by known velocity components of the tow-
ship at any time. i.e.     
  (0, ) ( ),                                                                       (3)V t v t  
 
Or, in terms of y , we have 

0 1 0 0 0 0
0 0 1 0 0 0 (0, ) ( ),
0 0 0 1 0 0

y t v t  

 
At the free end the three boundary conditions can be ex-
pressed as 

( , ) ( ( , ), ) ( , ) ( ( , ), ) 0,                             (4)Cy S t B y S t t y S t Q y S t t
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At 0t ,  it  is  assumed that  the initial  condition is  known 
i.e ( , 0)y s is  a  known function of (0 )s s S . This condi-
tion along with six boundary conditions provides the 
complete solution of the governing equations. 
Computations start from a steady state solution (more 
precisely, the tow-ship is assumed to move with constant 
velocity), which is taken as the initial condition for the 
whole system. 
The variables T  and  are determined from equations 

1
21

sin (1 ) | |
2 t t tT w d eT C U U  
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Since ( ) 0T S , the critical angle ( )S must satisfy 
1 1

2 22 2 0
1

cos (1 ) ( )
2 n n n bw d eT C U U U  

where T is  the partial  derivative of  T  w.r.t. s  , holding 
t  fixed; partial derivative of  w.r.t. s , holding t  
fixed. 
The position (x, y, z) of the cable, in the inertial frame, are 
obtained from the relations 

(1 ) cos cos ,x eT  
(1 ) sin cos ,y eT  
(1 ) sin ,z eT  

Integrations in s determine ( , , )x y z when eT  and  the  
angles  and  are known.  
If we put 
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The angle  is computed from the relation 
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where 1J , 2J  and 3J  are the current velocities in the 
inertial frame. 
Similarly, , ,t n bU U U  are computed from the relations 
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Three components of the tow-ship velocity, free end zero 
tension  along  with  subsequent  two  more  free  end  boun-
dary conditions provide a total  of  six requisite  boundary 
conditions. The solutions of the six governing equations 
along with six boundary conditions provide dynamic 
response of the cable array system. The solution proce-

dure starts with the cable array length discretization and 
time division, followed by writing of finite difference 
scheme  for  governing  equations  at  all  the  nodes  and  the  
boundary conditions. All these equations are assembled. 
The solution of this finite-difference form of the assembly 
of non-linear algebraic equations is obtained by Newton’s 
method. 

3  NUMERICAL APPROACH 
Second order central finite difference method is applied 
to the governing differential equations to convert them 
into the algebraic difference approximations. 
The total cable-array length S is divided into N segments 
of arbitrary length 

0 1 2 10 ........ N Ns s s s s S . 

The discrete approximation to ( , )j iy s t is  taken  to  be  Y  

with ( , )i
j j iY y s t . For convenience the following nota-

tions are used. 
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Discretizing the governing equations of motion 
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Denoting the LHS of the equation (5) by 1
1

i
j , we get the 

difference approximation 
1
2
1
2

0, j=0,1,.......,N-1;                                                    (6)
i

j
 

to the governing equations. 
Similarly, the boundary conditions are approximated by 

1
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The three equations (6), (7) and (8) can be written together 
as 

1
12 ( , ) 0,                                                                 (9)

i i iY Y  
where 

1 1 1 1 1 1 1
2 2 2 2 2 2 2

0 1 3 3 1
2 2 2 2

( , , , ........, , , ),
i i i i i i i

NN N
 

 
The system (9) is an implicit, centered, second order ap-
proximation to the system of hyperbolic pdes. Given iY  
at time it , the  system  of  equations  (9)  determine  1iY  at 

1it . Further we assume that the initial state of the cable 
0Y is known. 

The non-linear algebraic equations (9) are solved by itera-
tion in the time domain using Newton’s method. The pre-
cise algorithm of Newton’s method is given below. 

(a) Obtain an estimate for  1iY by extrapolating 
1iY and iY , i.e. 
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i i
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(b) Compute  a  correction  to 1iY  by solving the li-
near system 

1 1
2 2

i i
Y  

            where 

               

1
1 2
2

1

i
i

iY
 

             is the Jacobian of the above system. 
 

(c)  1i iY Y Y  
gives the improved value of 1iY . 
 

(d) If the absolute value of maximum relative change    
in any component of the solution 1iY is less than 

310 , increment the time and go to step (a), oth-
erwise repeat (b) and (c) using new value of 1iY . 
 

The  iteration  is  observed  to  converge  quadratically.  In  
step (a), using iY as the initial guess for 1iY is sufficient 
to achieve convergence. Gauss elimination with partial 
pivoting is applied to solve the linear system. 
 
4  RESULT AND DISCUSSIONS 
The developed Newton’s scheme is implemented on the 
underwater towed cable-array model. The underwater 
towed cable-array system is discussed under a six seg-
ment model, in which dynamic analysis of towed cable is 

discussed. In the towed cable-array model, the steady 
ocean current (0.5 m/s) is taken. 
 
4.1 Six Segment Cable model 
Here we discuss unsteady-state behavior of the cable dur-
ing the ship manoeuvring for three different oceanic cur-
rent  conditions,  using  the  developed  code.  Fig  4  illu-
strates the towed array system while Table 1 gives the 
physical characteristics of each segment of six segment 
cable model. 

 
Fig 4:  Six Segment Towed Array System. 

 
Table 1: Tow Cable System Physical Properties. 

Seg
ment 

Length 
(m) 

Diamter 
(m) 

Weight 
(N/m) tC  nC  

1 723.0 0.04060 2.3349 0.01500 2.0 
2 8.23 0.079375 0.0 0.00898 1.8 
3 71.02 0.079375 0.0 0.00898 1.8 
4 156.36 0.079375 0.0 0.00898 1.8 
5 38.71 0.079375 0.0 0.00898 1.8 
6 30.48 0.025400 0.569134 0.02168 1.8 
 
4.2 Dynamic state analysis 
Dynamic state analysis of underwater towed-cable is dis-
cussed when tow-ship changes its speed in a fixed direc-
tion (i.e., transient behavior) making linear profile. Com-
putations start from a steady state solution which is taken 
as the initial condition for the dynamic state solution. 
 
Linear Profile 
Here we assume that the tow-ship changes its speed 
along the x-direction in a straight line path. This means 
that the tow-ship changes its speed along a straight line 
path in each time step. The linear profile is given by 

0 0( )( / ) ,                                                     (10)fv v v t T v

where 0v and fv are the tow-ship’s initial and final speeds, 
respectively, and T  is the elapsed time taken to reach the 
final speed. 
 
Case (i): When tow-ship accelerates from 4 to 12 
m/s in a linear profile 
Fig  5  shows  the  graph  between  the  trail  and  the  cable  
depth when the tow-ship accelerates from 4 to 12 m/s in 
a  linear  profile,  when  there  is  no  current,  against  and  
along the current directions respectively. The cable depth 
varies from 38.5 to 38.6 m, 33.6 to 33.8 m and 44.4 to 44.5 
m, when the tow-ship accelerates, when there is no cur-
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rent, against and along the current directions, respectively 
as shown in Fig 5 (a), (b), (c). Thus for three different cur-
rent situations, the cable depth varies in the range 33.6 to 
44.5  m  when  the  tow-ship  accelerates  from  4  to  12  m/s  
along the x-direction. It is observed that maximum cable 
depth occurs when the tow-ship accelerates along the 
current direction and minimum cable depth occurs when 
the tow-ship accelerates against the current direction. 
Fig 6 shows the graph between cable length and tension 
when the tow-ship accelerates from 4 to 12 m/s in a linear 
profile,  (a)  when  there  is  no  current,  (b)  against  current  
direction and (c) along the current directions, respective 
ly. The tow-point tension varies from 17.0 to 82.8 kN, 21.5 
to 89.8 kN and 13.1 to 76.3 kN, when the tow-ship accele-
rates, when there is no current, against and along the cur-
rent directions, respectively as shown in Fig 6 (a), (b) and 
(c).  Thus  for  three  different  current  situations,  the  tow-
point tension varies in the range 13.1 to 89.8 kN when the 
tow-ship accelerates from 4 to 12 m/s along  the  x-
direction. It is observed that maximum tow-point tension 
occurs when the tow-ship accelerates against the current 
direction and minimum tow-point tension occurs when 
the tow-ship accelerates along the current direction. 
 
Case (ii): When tow-ship decelerates from 12 to 4 
m/s in linear profile 
Fig  7  shows  the  graph  between  the  trail  and  the  cable  
depth when the tow-ship decelerates from 12 to 4 m/s in 
a  linear  profile,  when  there  is  no  current,  against  and  
along the current directions, respectively. The cable depth 
varies from 6.7 to 6.9 m, 5.9 to 6.1 m and 7.7 to 7.9 m, 
when the tow-ship decelerates, when there is no current, 
against and along the current directions, respectively as 
shown  in  Fig  7  (a),  (b)  and  (c).  Thus  for  three  different  
current situations, the cable depth varies in the range 5.9 
to 7.9 m when the tow-ship decelerates from 12 to 4 m/s 
along the x-direction. It is observed that maximum cable 
depth occurs when the tow-ship decelerates along the 
current direction and minimum cable depth occurs when 
the tow-ship decelerates against the current direction.  
Fig 8 shows the graph between cable length and tension 
when  the  tow-ship  decelerates  from  12  to  4  m/s  in  a  li-
near profile, when there is no current, against and along 
the current directions, respectively. The tow-point tension 
varies from 58.1 to 153.2 kN, 68.3 to 166.3 kN and 48.6 to 
140.7 kN, when the tow-ship decelerates, when there is no 
current, against and along the current directions, respec-
tively  as  shown  in  Fig  8  (a),  (b)  and  (c).  Thus  for  three  
different current situations, the tow-point tension variesin 
the range 48.6 to 166.3 kN when the tow-ship decelerates 
from 12 to 4 m/s along the x-direction. It is observed that 
maximum tow-point tension occurs when the tow-ship 
decelerates against the current direction and minimum 
tow-point tension occurs when the tow-ship decelerates 
along the current direction. 
 

Case (iii): When tow-ship accelerates from 4 to 12 
m/s thereafter decelerates from 12 to 4 m/s in linear 
profile 
Fig  9  shows  the  graph  between  the  trail  and  the  cable  
depth  when  the  tow-ship  accelerates  from  4  to  12  m/s  
thereafter decelerates from 12 to 4 m/s in a linear profile, 
when there is no current, against and along the current 
directions, respectively. The cable depth varies from 38.4 
to 38.5 m, 33.6 to 33.8 m and 44.4 to 44.5 m, when the tow-
ship accelerates and decelerates, when there is no current, 
against and along the current directions, respectively as 
shown  in  Fig  9  (a),  (b)  and  (c).  Thus  for  three  different  
current situations, the cable depth varies in the range 33.6 
to 44.5 m when the tow-ship accelerates from 4 to 12 m/s 
and  then  decelerates  from  12  to  4  m/s  along  the  x-
direction. It is observed that maximum cable depth occurs 
when the tow-ship accelerates and decelerates along the 
current direction and minimum cable depth occurs when 
the tow-ship is accelerating and decelerating against the 
current direction. 
Fig 10 shows the graph between the cable length and ten-
sion when the tow-ship accelerates from 4 to 12 m/s the-
reafter  decelerates from 12 to 4 m/sec in a linear profile,  
when there is no current, against and along the current 
directions, respectively. The tow-point tension varies 
from 17.0 to 40.9 kN, 21.5 to 48.2 kN and 13.1 to 33.9 kN, 
when the tow-ship accelerates and decelerates, when 
there  is  no  current,  against  and  along  the  current  direc-
tions respectively as shown in Fig 10 (a), (b) and (c). Thus 
for three different current situations, the tow-point ten-
sion varies in the range 13.1 to 48.2 kN when the tow-ship 
accelerates from 4 to 12 m/s and then decelerates from 12 
to  4  m/s  along  the  x-direction.  It  is  observed  that  maxi-
mum tow-point tension occurs when the tow-ship accele-
rates and decelerates against the current direction and 
minimum tow-point tension occurs when the tow-ship 
accelerates and decelerates along the current direction. 
 
Table 2: Cable depth Range (m) in Linear Profile. 
Speed               Linear Profile 

1 0J  1 0.5J  1 0.5J  
4 - 12 m/s 38.5 - 38.6 33.6 - 33.8 44.4 - 44.5 
12 - 4 m/s 6.7 - 6.9 5.9 - 6.1 7.7 - 7.9 
4 - 12m/s & 
12 - 4 m/s 

38.4 - 38.5 
 

33.6 - 33.8 
 

44.4 - 44.5 
 

 
Table 3: Tow-point Tension Range (kN) in Linear Profile. 
Speed               Linear Profile 

1 0J  1 0.5J  1 0.5J  
4 - 12 m/s 17.0 - 82.8 21.5 - 89.8 13.1 - 76.3 
12 - 4 m/s 76.3 - 153.2 68.3 -166.3 48.6 -140.7 
4 - 12 m/s & 
12 - 4 m/s 

17.0 -40.9 21.5 - 48.2 13.1 -33.9 
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(a) When there is no current. 

 
(b) Against the current direction. 

 
(c) Along the current direction. 

Fig 5: Graph between the Trail and the Cable Depth when           
the Tow-Ship Accelerates from 4 to 12 m/s in  

Linear Profile: (a), (b), (c). 

 
(a) When there is no current. 

 
(b) Against the current direction. 

 
(c) Along the current direction. 

Fig 6: Graph between the Cable length and Tension when       
the Tow-Ship Accelerates from 4 to 12 m/s in  

Linear Prfile: (a), (b), (c). 
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(a) When there is no current. 

 
(b) Against the current direction. 

 
(c) Along the current direction. 

Fig 7: Graph between the Trail and the Cable Depth when 
the Tow-Ship Decelerates from 12 to 4 m/s in Linear Pro-

file: (a), (b), (c). 

 
(a) When there is no current. 

 
(b) Against the current direction. 

 
(c) Along the current direction. 

Fig 8: Graph between the Cable length and Tension when 
the Tow-Ship Decelerates from 12 m/s to 4 m/s in Linear 

Profile: (a), (b), (c): 
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(a) When there is no current. 

 
(b) Against the current direction. 

 
(c) Along the current direction. 

Fig 9: Graph between the Trail and the Cable Depth when 
the Tow-Ship Accelerates from 4 to 12 m/s then Decele-
rates from 12m/s to 4 m/s in Linear Profile: (a),(b),(c). 

 
(a) When there is no current. 

 
(b) Against the current direction. 

 
(c) Along the current direction. 

Fig 10: Graph between the Cable length and Tension 
when the Tow-Ship Accelerates from 4 to 12 m/s then 

Decelerates from 12m/s to 4 m/s in Linear Profile: 
(a),(b),(c). 
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5    CONCLUSION 
In this study, a three-dimensional numerical program is 
developed  for  the  analysis  of  the  underwater  towed  ca-
ble-array system when tow-ship makes linear profile dur-
ing manouring. An implicit finite difference method is 
employed for solving the three dimensional cable equa-
tions.  In order to solve the non-linear and coupled prob-
lems, Newton’s iteration scheme is used, and satisfactory 
results are obtained. The developed numerical program 
can  be  applied  to  towed  array  systems  for  detecting  a  
moving object or submarine. 
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